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LE'ITER TO THE EDITOR 
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Moscow Region. 141980 Russia 
$ Laboratory of Computing Techniques, Joint Institute for Nuclear Reseanh, Dubna, Moscow 
Region, 141980 Russia 
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Abstract. We investigate the propeaies of boundary avalanches in 20 Abelian sandpile model 
(ASM). We w m c t  the one-fWne eolrespondence of boundary avalanches and two-noted 
spanning m. Using the connection between the obtained graph representation and lattice Green 
functions we calculate the exact values of Cntical erponents for size and lifetime dishibntions 
of avalanches starting at fhe open boundary that fmms an angle a. We find that the probabUi@ 
of a h n d q  avalanche of the si= s varies as s-'-=m for large s and the plobabiliry of aa 
avalanche of lifetime f varies as r-'""/5a for large 1. The obtained values are verified by 
n n m e M  simulations. 

In recent years there have been numerous studies of the sandpile model proposed by Bak et 
a! [1,2]. The sandpile models display the mechanism of emergence. of power-law spatial 
and temporal correlations during the evolution of extended dissipative systems. Avalanche 
processes caused by random pertnrbations play a crucial role in this self-organized critical 
(SW) behaviour. The probability distribution of size and lifetime of avalanches follow 
power laws '00) - sM7* and D(z) - t-". To determine the critical exponents, several 
simplified models have been suggested by introducing anisotropy [31, directedness [4,5], 
the Bethe lattice [6] or a complete graph structure [7]. In spite of a variety of methods 
used in these solutions, the analytical determination of the critical exponents for the basic 
Abelian sandpile model (ASM) [SI remains an unsolved problem. 

In parallel with bulk critical exponents, most of the critical models have non-hivial 
boundary exponents. If the conformal limit of a given lattice model is known, the explicit 
relationship between bulk and boundary exponents can be established [9]. In the case of the 
sandpile model, boundary exponents correspond to avalanches initiated at boundary sites of 
the lattice. The aim of thii letter is to find the exact values of boundary critical exponents 
r, and T* for the AsM with open boundary conditions. 

We consider the ASM on a N x N square lattice. L. .Each boundary site is connected 
by a bond to the additional site * which plays the .role of the sink. The discrete Laplacian 
(Nz + 1) x (Nz + 1) mahix A has non-zero elements Ai( qual to the number of neighbour 
sites of i and Ai, = -1 for all pairs of adjacent sites i and j .  The toppling matrix A(*) 
is obtained from A by deleting the column and row corresponding to t.. The height of the 
sandpile at any site i E L takes an integer value zi. Particles are added at randomly chosen 
sites and zi is increased as 

zi --f zi + 1. (1) 
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If the height zi exceeds the critical value A$), that site becomes unstable and topples. 
On toppling at site i 

All stable configurations of heights have the same probability in the steady state. They 
are characterized by the absence of forbidden subconfigurations (FSC) on subsets 3 c L 
satisfying the inequalities [SI: 

for all k E 3,j # k. (3) 

Dhar IS] has introduced the burning algorithm to determine if a given configuration is 
allowed in the soc state and has found the total number of allowed configurations. Based 
on the burning algorithm, Majumdar and Dhar [I 11 have established an equivalence between 
the soc state of ASM and q -+ 0 limit of the Potts model that can be represented in turn 
as a set of spanning trees covering a given lattice. For this reason, any allowed stable 
configuration can be put into one-to-one correspondence with a spanning tree. 

The burning procedure for constructing trees is equivalent to a ‘toppling from sink‘ 
together with a given order of preference for successive topplings of sites [SI. By this , 

procedure, one adds a particle to each site connected with * causing all sites of the lattice to 
topple (otherwise, the configuration would contain an FSC). The spanning tree is a collection 
of bonds connecting pairs of sites which toppled on successive moments of time. The point 
* is the root of the tree T,. 

The translation of the allowed configurations into the language of spanning trees makes 
it possible to fmd the fractional numbers of sites having heights 1, 2, 3, 4, [lo, 121 and, in 
general, to get a comprehensive description of the SOC state. 

The study of avalanches needs an extension of the tree representation. To this end, we 
will consider an avalanche process in more detail. The Abelian property admits an arbitrary 
order of topplings of non-stable sites during an avalanche. We choose a special but quite 
natural order amongst these. Namely, let us add a particle to the site i having the height 
Aii in an allowed configuration C. We topple it once and then topple all sites that become 
unstable keeping the site i out of the second toppling. We call the set of sites toppled in 
this way ‘the first wave of topplings’. 

After the first wave has gone out, we topple the site i a second time and continue the 
avalanche not permitting this site to topple a third time. The set of relaxed sites in the 
period after the first wave is called ‘the second wave’. The process continues producing 
intermediate configurations CI , G, . . . , until the site i undergoes the maximum number of 
topplings and the avalanche stops. 

The cluster of sites toppled in the kth wave f o m  the subset & of the configmtion 
ck. if the kth wave is not the last one in a given avalanche, ;EX is FSC. The sites belonging 
to 3 1  topple during the kth wave only once. Indeed, let us assume that a certain site j has 
toppled the first time after its neighbour j ‘ .  Then, j would have the second toppling only 
after topplings at all its neighbours, including j‘. Therefore, to topple j twice, we have first 
to topple j’ twice. As the initial toppling at site i never repeats during the given wave, the 
other sites of 3 k  topple once, as well. 

The procedure, which is inverse of that described, has been introduced recently by Dhar 
and Manna [13]. 

To find the tree representation of waves, we consider the ASM model on an auxiliary 
lattice L’, consisting of the original lattice L, the site connecting with boundary sites of 
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L and an additional bond connecting the site * and a given site i situated inside the lattice. 
Accordingly, we change the element of the topping matrix A$) + A$) + 1. Applying the 
burning procedure, we construct the set of spanning trees g n  the lattice L’. All trees can be 
divided into two classes. The first class consists of t k s  not containing the bond (*i) and 
therefore coincides with the set of one-rooted spanning trees T, on the original lattice. The 
trees of the second class contain the bond (*i). On deleting the bond (* i )  a subtree Ti gets 
disconnected. Considering the site i as a root of Ti, we obtain a two-rooted situation where 
a spanning tree on the original lauice consists of two disconnected components T, and Ti. 

According to the burning procedure, the spanning trees are obtained by adding particles 
to all neighbouring sites of *, including i. The particle added to i can be considered as a 
perturbation giving rise to an avalanche. Since i is connected with *, it topples only once 
and the avalanche is actually the wave. This wave corresponds to the subtree Ti. Also, one 
can first add k - 1 particles to i and then apply ‘the toppling from the sink‘. On the one 
hand, this process produces the kth wave of topplings and, on the other hand, it leads to 
the subtree corresponding to this wave. 

On the contrary, given a two-rooted tree, one can reconstruct a unique configuration of 
heights using the order of preference of the buming’procedure [ l l ] . ~  

Thus, in addition to the correspondence betwkn allowed stable configurations and o n e  
rooted spanning trees (TJ, we get the one-to-one correspondence between all waves of 
topplings and two-rooted spanning trees IT, U Ti} .  

The graph representation of waves enable us to link the toppling process and the lattice 
Green function Gij. For this purpose, we shall prove the following 

Proposition. For an arbitrary connected graph r with a fixed vertex *, 

G~~ = N(Lj)/N (4) 

where NCiJ) is &e number of two-rooted spanning trees having the roots * and i, such 
that both vertices i and j belong to the same one-rooted subtree; N is the total number of 
spanning trees on ~r. 

Prooj! 
theorem 1141 reads 

Let A be the symmetrical Laplacian matrix of the graph I-‘. The Kirchhoff s matrix 

N = det A(*) 

where manix A(*) is obtained from A by deleting the column and row corresponding to 
the root *. By the Kircbhoff s formula for resistance, the number N ” ) ( j )  of two-component 
spanning trees having the vertices i and j in difeerenr components is 

where the mahix A({)D’) is obtained from A(*) by deleting the columns and rows 
Corresponding to the vertices i and j .  

Instead of deleting elements of A(*), we can add E to the elements A$) and A;) and 
--6 to the elements A:;) and A$) obtaining the new matrix At) .  Then 
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and we can evaluate the ratio N(iJ)/N by the formula 

det A?) 
det A(*) 
~- - det(Z + GB) 

where B = A:) - A(*) and G = (A(*))-’ is the solution of the Poisson equation with the 
boundary conditions G,k = 0’ for all k. Direct evaluation in (8) leads to 

(9) 

, ,  

N“)”’/N = Gii + Gjj - Gij - Gji. 

where the notation (ij) means filling both vertices into one component. Analogously 

(12) 

Since, by the definition, N(*)(’j) = N“”, (4) is a simple consequence of the linear equations 
(9-12). 

Due to the relationship between two-rooted trees and waves, we conclude that NGij is 
the number of waves initiated at the site i and involving the site j. 

The derived result is in agreement with the observation by Dhar 181 that Gij is the 
expected number nij of topplings at the site j due to the avalanihes caused by adding a 
particle at i. Indeed, as each wave corresponds to exactly one toppling of all its sites, njj 

coincides with the expected number of waves involving the site j. 
Now, we can use the Green function representation for finding the wave distributions. 

First, we consider the waves deep inside the lattice without reference to particular avalanches 
to which every wave belongs. Assuming isotropy and compactness of waves, we can 
estimate the probability P(r > rjj) that the radius of the wave is not less than the distance 
between i and j as 

, p ) W  = N(*i)ti) + N(i)(*j), 

P(r > rij) - Gij. (13) 

The size of avalanches scales as s - rz. Then the wave probability distribution 
D(s) - l/s follows immediately from the known asymptotiw of the Green function 
G(r)  - Inr. 

Returning to the boundary avalanches, we note that in this case each avalanche consists 
of only one wave. The reason is that any boundary site i has the root * as the neighbour site. 
Therefore, the second toppling of the site i is impossible because of the lack of topplings 
at *. The asymptotic form of the boundary Green function in the continuum limit is 

where a is a unit vector perpendicular to the boundary. Correspondingly, the probabilities 
that the front of the avalanche exceed r is 

(15) 
1 

prob(r’ =- r )  - - 
r 
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which leads, after differentiation, to the radius distribution D(r) - l/rz. Using, as before, 
the relations s - rz and D(s) ds - D(r) dr. we get the sought probability distribution 

(16) 

The relationship between the exponents r, and r, can be found from the following 
arguments. By the construction of trees, the avalanche process follows the branch structure 
of the tree. Then, the duration of avalanche T varies as the chemical distance 1 of the tree 
[Ill. The exact asymptotics I - r5/4 is known for the q-component Potts model at q = 0 
1151. This implies that 

I 
$312. 

D(s) - - 

5r, = 8rs - 3. (17) 

Thus, for the boundary avalanches, we have r, = 3/2 and rt = 9/5. 
The above arguments can be easily generalized to the boundaries forming an arbitrary 

angle a. It is known from the theory of complex variables that the Green function of the 
Laplacian in the region bounded by angle a has the form 

where z = x + iy, (x,  y) are the Caaesian coordinates. Then, the function G(r)  decays as 

G(r) - r-R/(L (19) 

,qr) N r-'-+. (20) 

qs) - s-'-+ (21) 

for any direction apart from arms of the angle. This leads to the distribution 

Again using the relation s - rz, we get the asymptotics 

which corresponds to rr = 1 + 2 and rr, = 1 + g .  
The analytical results have been verified numerically by Monte Carlo simulations. We 

considered lattices with sizes up to 100 having angles a = n/2, K, 3n/2,2n with statistics 
up to lo6 avalanches. 

Table 1. Angular critical exponents for multiples of 7712. 

U r/2 K 31112 2n 

rs 1.9 1.51 1.32 121 
exact 2 312 4i3 514 

Table 1 shows that the numerically determined values are in good agreement with our 
predictions. 

The angle 2n is of special interest. In this case, avalanches start at the top of a cut of 
the plane. The geometry of the avalanches closely resembles the one occurring deep inside 
the lattice. So, one can expect that the critical exponents in both the cases are in close 
agreement. Indeed, the difference between numerical estimations by Manna [16] rs = 1.22 
and r, = 1.38 and the boundary exponents near the cut rr = 1.25 and r, = 1.40 is not more 
than 3%. 

One of us (VBP) thanks Dublin Institute for Advanced Studies for kind hospitality. 
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